iz^3+(2i-1)z^2-(i+4)z+3(2i-1)=0

Simple and best practice solution for iz^3+(2i-1)z^2-(i+4)z+3(2i-1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for iz^3+(2i-1)z^2-(i+4)z+3(2i-1)=0 equation:


Simplifying
iz3 + (2i + -1) * z2 + -1(i + 4) * z + 3(2i + -1) = 0

Reorder the terms:
iz3 + (-1 + 2i) * z2 + -1(i + 4) * z + 3(2i + -1) = 0

Reorder the terms for easier multiplication:
iz3 + z2(-1 + 2i) + -1(i + 4) * z + 3(2i + -1) = 0
iz3 + (-1 * z2 + 2i * z2) + -1(i + 4) * z + 3(2i + -1) = 0

Reorder the terms:
iz3 + (2iz2 + -1z2) + -1(i + 4) * z + 3(2i + -1) = 0
iz3 + (2iz2 + -1z2) + -1(i + 4) * z + 3(2i + -1) = 0

Reorder the terms:
iz3 + 2iz2 + -1z2 + -1(4 + i) * z + 3(2i + -1) = 0

Reorder the terms for easier multiplication:
iz3 + 2iz2 + -1z2 + -1z(4 + i) + 3(2i + -1) = 0
iz3 + 2iz2 + -1z2 + (4 * -1z + i * -1z) + 3(2i + -1) = 0

Reorder the terms:
iz3 + 2iz2 + -1z2 + (-1iz + -4z) + 3(2i + -1) = 0
iz3 + 2iz2 + -1z2 + (-1iz + -4z) + 3(2i + -1) = 0

Reorder the terms:
iz3 + 2iz2 + -1z2 + -1iz + -4z + 3(-1 + 2i) = 0
iz3 + 2iz2 + -1z2 + -1iz + -4z + (-1 * 3 + 2i * 3) = 0
iz3 + 2iz2 + -1z2 + -1iz + -4z + (-3 + 6i) = 0

Reorder the terms:
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 0

Solving
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '3' to each side of the equation.
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + 3 + -1z2 = 0 + 3

Reorder the terms:
-3 + 3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 0 + 3

Combine like terms: -3 + 3 = 0
0 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 0 + 3
6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 0 + 3

Combine like terms: 0 + 3 = 3
6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 3

Add '4z' to each side of the equation.
6i + -1iz + 2iz2 + iz3 + -4z + 4z + -1z2 = 3 + 4z

Combine like terms: -4z + 4z = 0
6i + -1iz + 2iz2 + iz3 + 0 + -1z2 = 3 + 4z
6i + -1iz + 2iz2 + iz3 + -1z2 = 3 + 4z

Add 'z2' to each side of the equation.
6i + -1iz + 2iz2 + iz3 + -1z2 + z2 = 3 + 4z + z2

Combine like terms: -1z2 + z2 = 0
6i + -1iz + 2iz2 + iz3 + 0 = 3 + 4z + z2
6i + -1iz + 2iz2 + iz3 = 3 + 4z + z2

Reorder the terms:
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 3 + 4z + z2 + -3 + -4z + -1z2

Reorder the terms:
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 3 + -3 + 4z + -4z + z2 + -1z2

Combine like terms: 3 + -3 = 0
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 0 + 4z + -4z + z2 + -1z2
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 4z + -4z + z2 + -1z2

Combine like terms: 4z + -4z = 0
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 0 + z2 + -1z2
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = z2 + -1z2

Combine like terms: z2 + -1z2 = 0
-3 + 6i + -1iz + 2iz2 + iz3 + -4z + -1z2 = 0

The solution to this equation could not be determined.

See similar equations:

| 26y=2 | | -112=11x+9 | | 2.75=14.25-.20x | | 2x+6y=56y | | 2y=44-6x | | 5=7-x/4 | | 6y+5-5y=9-6 | | 16/19=x/38 | | 12341234x+y=999999999999999999999999 | | 2-n+4=3n+3 | | 3x-7+4x+2= | | 3x+20=5x-19 | | 7n^2=8n-10 | | 11-5d=31 | | p(p+4)=21 | | 2/1=12 | | (3v+x)(3v-6x+7)= | | 4(3x+4)=14x+12-2x+4 | | 4/3x-3/10=7/8x | | -2y=-3x-10 | | 4n^2-2=-73 | | 7x+17x-6=6(4x+10) | | 4z-3=-11 | | -4y-20=-3x | | 5x=80(x^-1/3) | | y=9-2(x) | | X(x+22)=-121 | | 8.4=3.1+x | | 2(2x-5)=3(4x-10)+16 | | -(1+2h+h^2)-4-1+4=m | | -4y-20=3x | | -5=c/4.5 |

Equations solver categories